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Note 

Comparison of Finite Differences and 
Finite Elements on a Parabolic ~r~b~ern* 

In a previous article [ 11, Shestakov et al. compared numerical solutions of the 
diffusion equation using two distinct methods, a nodal one using finite elements, 
FE, and a zonal one based on finite differences, FD. The FD method has been 
described in an earlier paper by Kershaw [ 21. In Ref. [ 11, emphasis was placed on 
obtaining an accurate solution on a “random mesh,” a prototype of what might be 
created by Lagrangian hydrodynamic distortions. In this note a similar comparison 
is made, but attention is turned to a smooth, nearly orthogonal mesh. The next 
paragraph presents a function that generates the grid. Two meshes, one a 
refinement of the other, are considered in this paper. They are used to solve two 
simple test problems. The first models linear energy diffusion through optically 
thick material. In the second problem, the material is optically thin and a 
limiter is invoked. The analytic solutions are one dimensional, but the ~~rne~eaI 
results show the effects of the mesh. 

To construct the grid consider the mapping: 

R = s -t ct sin(ins) cos(nt) (Ia) 

Z = t - CI sin(rct) cos(lss). 

If LX < l/rc, then for 0 d s, t 6 1, Eq. (1) implies 0 d R, Z< 1. Given two integers 
KMAX and LMAX, a mesh may be generated by first defining two arrays, 
CSL 1 Ezx and [tJ$M<“, where 

L-l K-l 
sL=LMAX-l 

and 
tK=KMAX- 1’ 
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232 A. I. SHESTAKOV 

These arrays in turn generate the mesh points (R,., Z,,,). For the test problems, 
the mesh of Eqs. (1) and (2) is translated by one in the R direction. The domain: 
0 Q Z < 1, 1 <R $2 is first filled with a square logical grid, (KMAX= LMAX). 
Next, two additional row of zones are placed below R = 1 and above R = 2. The 
final grid has LMAX= KMAX+ 2; an example of a 33 x 35 mesh is displayed in 
Fig. 1 where CI = l/3.2. The lines K= 1, KMAX coincide with Z= 0, 1 respectively 
while the lines L = 1, LMAX coincide with R = 1 - AKMax, 2 + AKM,, respectively 
where A,,,, E l/(KMAX- 1). We compare results along L = LMAX (i.e., along 
R 1 = 2 f A) and especially at the (2, LMAX) and (KMAX, LMAX) zones (the 
zones are labeled by the largest value of the K and L indices of any of its vertices). 
Only grids corresponding to KMAX= 33 or 65 and a = l/3.2 are considered in this 
paper. 

The mapping of Eq. (1) is invertible, for its Jacobian equals 

J= w Z) - = 1 - (an)” [sin”(rcs) + sin*(rct) - l] 
ah t) (3) 

and is nonzero if CI < l/n. It is easy to analyse how far the mesh strays from 

p’” rII:k.aY.I:ImaX~, z,,:knax.,:,nax 6 
. Xy~BpII:UIBY,,:I~BX.l:2, 

FIG. 1. Computational 33 x 35 mesh. Z is -the abscissa, R the ordinate; K increases with Z, L 
increases with R. 



COMPARISON OF DIFFERENCES AND ELEMENTS 233 

orthogonality. The grid generated by Eqs. (1) and (2) is a contour plot of constant 
s and t values and 

where the elements of the Jacobian matrix, J, consist of the corresponding partial 
derivatives of Eq. (I), e.g., R, = dR/as. Multiplying Eq. (4) by J-’ expresses the 
changes of s and t in terms of changes of R and Z. Then it is trivial to compute the 
normalized gradient vectors, 

The gradient vectors are in the R and Z directions respectively, e.g., 
J- “(Z,fi - R,g). The normalized gradients of Eq. (5) are normal to the S, t = const 
curves of Fig. 1; their product calibrates the degree of orthogonality of the mesh. 
Substituting the mapping of Eq. (1) we write this product in compact form: 

i [ 

1 - (cU# (cos 2Irns -t COS 25rt)/2 2 -1’2 
f(s, t)=fi;fi,= 1+4 

(CUC)~ sin 2ns sin 27ct 11 ~ 
(4) 

a 

FIG. 2. Measure of orthogonality of the mesh, f(s, s), as a function of the abscissa, 2s. 
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Since f is symmetric in s and t, its extrema occur when s = t and so we examine the 
function f (s, s). Using 2s as the independent variable, f (s, s) is displayed in Fig. 2. It 
vanishes at s = 0, 4 and peaks at s z 0.115, where f,,, z 0.605. On a 33 x 33 grid this 
translates into a minimum angle of approximately 53” at K= L M 4. Mapping to the 
R, Z space of Fig. 1, the grid lines deviate the most from orthogonality at 
(R, Z) z (1.22, 0.012) and the other 3 points symmetric to it. 

The above grid is used to solve the energy conduction equation, 

(7) 

on the domain: l-d<RdR,=2+4 and 06261. In Eq.(7) and in what 
follows t denotes. time and u is an energy density. The diffusion coefficient, D, is 
a function of the mean free path, 1. As an initial condition, we set u = 1.372 x 10-26. 
A Milne or mixed boundary condition, 

u+Ta,u=o, (8) 

FIG. 3. Linear energy conduction problem; FD scheme; 33 x 35 mesh. Outgoing flux near 
(R, 2) = (2,O) (curve “a”) and outgoing flux near (R, Z) = (2, 1) (curve “b”) as functions of time. 
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is imposed along R,. Symmetry conditions hold along the Z boundaries. At time 
t = 0 and thereafter we fix u = u0 = 7.042 x lo-r3 along R = R, = 1. A caveat: for the 
nodal FE scheme, u is fixed along R = R, and R, - d. For the zonal FD scheme, u 
is fixed along the lowest set of zones: 1 - A < R < 1 which effectively fixes u at some 
intermediate zone centers, &,, [2] obtained by integrating over the above 

i? =~R21-A+A2/3 
’ fRdR 1-A/2 ’ (91 

Hence, & = 0.9845, 0.9922 if KMAX = 33, 65, respectively. 
We model the radial duffusion of a constant energy source. Energy is measured in 

units of J = 1Or6 ergs. Time is in units of z = lo-’ s. Distances are in centimeters. 
ence, u, the energy density, is in units of J/cm3, the speed of light, c % 300 cm/z, 

and the constant density p is in units of grams/cm3. Some results are given in ter 
of the energy per gram, E,; clearly, u = pE,. The mean free path is given by 

I = l/plc, 

and the opacity, K (cm”/g) is fixed, JC = 1. 

3.0 

FIG. 4. Linear energy conduction problem; FE scheme; 33 x 35 mesh. Outgoing flux near 
(R, Z) = (2,0) (curve “a”) and outgoing flux near (R, Z) = (2, 1) (curve “b”) as functions of time. 
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In the first problem, linear energy conduction is modeled, 

(11) 

and I= 10P2 (p = 102). From Eq. (7), the characteristic diffusion equilibration time 
is given by 

u Du -x- 
d 2’ hence 

tD 
t, x g, 

where d = 1 is the characteristic gradient length of the problem. Substituting, we 
find t, = 1. 

This simple argument is accurate to within an order of magnitude. In Figs. 3 and 
4 we plot the time history of the outgoing flux in units of J/cm’/r for the 
(2, LMAX) and (KMAX, LMAX) zones for the FD and FE methods. Note that by 
t=t,, the flux has stabilized to its equilibrium value. Figure 3 (FD scheme) shows 
that near (R, Z) = (2, 1 ), the flux is 17 % greater than at (R, Z) = (2,O). The FE 
results of Fig. 4 show no such asymmetry. The bias of FD is entirely due to mesh 
effects. It is systematic over the problem duration time. It anomalously and 

3.06 

3.09 

3.02 

3.00 

FIG. 5. Linear energy conduction problem; FD scheme; 33 x 35 mesh. Zonal energy per gram, E,, as 
a function of Z at the outgoing boundary, R = R, . 



COMPARISON OF DIFFERENCES AND ELEMENTS 237 

consistently raises the energy in the (R, 2) = (2,l) corner. Figures 5 and 6 plot E, 
along RI at t z 0.1 which according to Figs. 3 and 4 corresponds to the time of 
arrival of the energy front. The FD results of Fig. 5 show that the energy at Z = 1 is 
6 % larger than at Z= 0. The FE results of Fig. 6 show only 

E I, = 1.004 
E, min 

or a 0.4% variation. Furthermore, the oscillations do 
tinuous mesh distortions. 

We conclude this problem by comparing the accuracy 
dary conditions imply that the equilibrium solution is 

1+ (3R,/20 lw(R,lR) 
” =” 1 + (3R,/21) log(R,/R,)’ 

The outgoing flux along R = R, is 

not depend on the con- 

of the results. The boun- 

(14) 
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FIG. 6. Linear energy conduction problem; FE scheme; 33 x 35 mesh. Zonal energy per gram, E,, as 
a function of 2 at the outgoing boundary, R = R,. 



FIG. 7. Flux limited conduction problem; FD scheme; 33 x 35 mesh. Contours of zonaf energy per 
gram, I?,. Dotted lines denote the grid. Time of plot (~2.717. 10-3) is approximately $ of the light 
transit time t,. 
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FIG. 8. Flux limited conduction problem; FE scheme; 33 x 35 mesh. Contours of zonal energy per 
gram, E,. Time of plot (z2.691 I 10-3) is approximately 2 of the light transit time t,. 
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FIG. 9. Flux limited conduction problem; FD scheme; 33 x 35 mesh. Zonal energy per gram, E,, as a 
function of Z at the outgoing boundary, R = R,. Time of plot (~2.717. lo-‘) is approximately $ of the 
light transit time t,. 
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FIG. 10. Flux limited conduction problem; FE scheme; 33 x 35 mesh. Zonal energy per gram, E,, as 
a function of 2 at the outgoing boundary, R = R,. Time of plot (= 2.691 . 10e3) is approximately 3 of the 
light transit time fC. 
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Substituting, we obtain DVu = 4.8662 x 10-i3, 4.9577 x lo-l3 if KMAX= 33, 65, 
respectively (for R0 = 1). These values should be suitably modified for FD if 
using &. If KMAX= 33, the equilibrium FE fluxes vary between 4.8708 x lo-l3 
and 4.8631 x lo-r3 or 0.15%; the FD fluxes vary between 5.792 x lo-i3 and 
4.760 x lo-l3 or 21%. Even for KMAX = 65, the FD fluxes have large asym- 
metries, they vary between 5.217x lo-l3 and 4.904x lo-l3 or 6.4%; the 
corresponding FE fluxes vary between 4.95965 x lo-i3 and 4.95685 x lOPI3 or 
0.06%. The superiority of FE is self-evident. 

The second test problem exhibits an even greater difference between the two 
methods. We change p to p = low2 and thereby increase 1 to I= 102. The domain is 
now optically thin as 1% d. For this case, radiation diffusion theory is strictly 
invalid and one should properly use the full transport equations [3]. However, in 
many applications, the reduced dimensionality of the diffusion equations has an 
irresistible appeal and so they are still used in a modified form with a flux-limited 
diffusion coefficient. The flux limiter has an effect whenever the light transit time, 

1.8 

d d d r 

(16) 

FIG. 11. Flux limited conduction problem; FD scheme; 33 x 35 mesh. Equilibrium contours of zonal 
energy .per gram, E,. 
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For this problem, d z 1, hence, 

t,x 3.33. 1o-3 > t, w lo-“. (17) 

The flux limiter attempts to limit the velocity of propagation of the energy fro 
c. The flux limited diffusion coefficient used is 

D=c/max(3/l, IVuI/u) (18) 

and is invoked explicitly. Its effectiveness is seen by examining the energy at 
t = 2.7 x 10-3. Since this is less than t,, the energy along R = RI should be una 
ted by the source along R,. The results emphasize the shortcomings of diff~s~~~ 
theory and comparison of the numerical results illustrate the respective influences of 
the mesh. Contours of E, are displayed in Figs. 7 and 8 for the FD and FE schemes 
respectively (KMAX= 33). Figure 7 also displays the mesh with dotted lines. The 
FD deviation from the expected Z symmetry is clearly due to the mesh. Figures 
and 10 display E, along R,. In Fig. 9, the FD scheme shows a 58% variation; 
FE results of Fig. 10 show only a 0.07 % variation. Even the equilibrium conto 
of the FD scheme are poor; they are displayed in Fig. 11~ The analytic e 
flux along R, = 2 + A,, is 1.0333 x 10-r”. The FE results along 

PIG er 

FIG. 12. Flw limited conduction problem; FD scheme; 65 x 61 mesh. Contours of zonal energy per 
gram, E,. Time of plot (~2.605. 10e3) is approximately # of the light transit time 1,. 
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1.0336 x 10-l’ and are the same for at least 7 figures. The corresponding FD 
equilibrium fluxes have an 11% variation. They rise steeply at the (I?, 2) = (2, 1) 
corner. 

The FD results do not improve on the finer (&VAX= 65) mesh. Contours of E, 
for FD at t = 2.6 x lop3 are given in Fig. 12. Figure 13 plots E, along RI, a 117% 
variation appears. For comparison, the FE results on the finer mesh at t = 2.7 . 10e3 
have a 0.1% variation. The equilibrium FD fluxes along R, have a 3.7% variation 
while the FE fluxes are nearly constant in Z. 

We conclude that FE is superior for transport dominated problems. This was 
previously demonstrated on random meshes and the results of this article show that 
even for smoothly varying grids, mesh effects may be dominant for FD while being 
nearly negligible for FE. Mesh effects are unavoidable for they will arise from the 
grid generated at the start of the calculation. Such nonorthogonalities appear when 
the mesh is aligned with a portion of the boundary or when the mesh is refined to 
elicit greater accuracy from a portion of the domain. The results of this article 
demonstrate that such grids may have an unphysical influence on the calculation 
when using finite differences. Yet such errors may be especially diffkult to isolate on 
more general problems. These inaccuracies are not characterized by classical 

3.5 

3.0 

8.5 

8.0 

7.5 

6.0 

5.0 

FIG. 13. Flux limited conduction problem; FD scheme; 65 x 67 mesh. Zonal energy per gram, E,, as 
a function of Z at the outgoing boundary, R = R,. Time of plot (~2.605. 10e3) is approximately 2 of the 
light transit time t,. 
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numerical instabilities that alert the user. The FD answers look smooth, but are 
nevertheless incorrect. Lastly, we note that for nonorthogonal grids, both F 
FE require similar amounts of computational effort as they are both nin 
schemes. 
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